P4.3-1) At the instant shown in the figure, link BC has a clockwise angular velocity of $\omega_{BC} = -2 \mathbf{k}$ rad/s. Determine the angular velocity of links AB and CD.

Find:

Solution:

Determine the velocity of point B and point C as a function of angular speed.

Draw the direction of the velocities and angular velocities on the figure.

 $\mathbf{v}_B(\omega_{AB}) = \underline{\hspace{1cm}}$

 $\mathbf{v}_C(\omega_{CD}) = \underline{\hspace{1cm}}$

Determine the angular velocity of link AB and link CD.

What is the angle between link *BC* and the horizontal?

 $\Theta =$

Using the relative velocity equation, write down the equation that relates the velocity of point C, point B., and ω_{AB}

 $\mathbf{v}_C =$ _____

Using the velocity for $\mathbf{v}_{\mathcal{C}}$ specified earlier, solve for the angular velocities.

 $\mathbf{o}_{AR} =$

 $\mathbf{O}_{CD} =$